Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37430799

RESUMO

Detection and monitoring of airborne hazards using e-noses has been lifesaving and prevented accidents in real-world scenarios. E-noses generate unique signature patterns for various volatile organic compounds (VOCs) and, by leveraging artificial intelligence, detect the presence of various VOCs, gases, and smokes onsite. Widespread monitoring of airborne hazards across many remote locations is possible by creating a network of gas sensors using Internet connectivity, which consumes significant power. Long-range (LoRa)-based wireless networks do not require Internet connectivity while operating independently. Therefore, we propose a networked intelligent gas sensor system (N-IGSS) which uses a LoRa low-power wide-area networking protocol for real-time airborne pollution hazard detection and monitoring. We developed a gas sensor node by using an array of seven cross-selective tin-oxide-based metal-oxide semiconductor (MOX) gas sensor elements interfaced with a low-power microcontroller and a LoRa module. Experimentally, we exposed the sensor node to six classes i.e., five VOCs plus ambient air and as released by burning samples of tobacco, paints, carpets, alcohol, and incense sticks. Using the proposed two-stage analysis space transformation approach, the captured dataset was first preprocessed using the standardized linear discriminant analysis (SLDA) method. Four different classifiers, namely AdaBoost, XGBoost, Random Forest (RF), and Multi-Layer Perceptron (MLP), were then trained and tested in the SLDA transformation space. The proposed N-IGSS achieved "all correct" identification of 30 unknown test samples with a low mean squared error (MSE) of 1.42 × 10-4 over a distance of 590 m.

2.
Comput Methods Programs Biomed ; 226: 107109, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174422

RESUMO

BACKGROUND AND OBJECTIVE: COVID-19 outbreak has become one of the most challenging problems for human being. It is a communicable disease caused by a new coronavirus strain, which infected over 375 million people already and caused almost 6 million deaths. This paper aims to develop and design a framework for early diagnosis and fast classification of COVID-19 symptoms using multimodal Deep Learning techniques. METHODS: we collected chest X-ray and cough sample data from open source datasets, Cohen and datasets and local hospitals. The features are extracted from the chest X-ray images are extracted from chest X-ray datasets. We also used cough audio datasets from Coswara project and local hospitals. The publicly available Coughvid DetectNow and Virufy datasets are used to evaluate COVID-19 detection based on speech sounds, respiratory, and cough. The collected audio data comprises slow and fast breathing, shallow and deep coughing, spoken digits, and phonation of sustained vowels. Gender, geographical location, age, preexisting medical conditions, and current health status (COVID-19 and Non-COVID-19) are recorded. RESULTS: The proposed framework uses the selection algorithm of the pre-trained network to determine the best fusion model characterized by the pre-trained chest X-ray and cough models. Third, deep chest X-ray fusion by discriminant correlation analysis is used to fuse discriminatory features from the two models. The proposed framework achieved recognition accuracy, specificity, and sensitivity of 98.91%, 96.25%, and 97.69%, respectively. With the fusion method we obtained 94.99% accuracy. CONCLUSION: This paper examines the effectiveness of well-known ML architectures on a joint collection of chest-X-rays and cough samples for early classification of COVID-19. It shows that existing methods can effectively used for diagnosis and suggesting that the fusion learning paradigm could be a crucial asset in diagnosing future unknown illnesses. The proposed framework supports health informatics basis on early diagnosis, clinical decision support, and accurate prediction.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico por imagem , Raios X , SARS-CoV-2 , Fala , Tosse/diagnóstico por imagem , Diagnóstico Precoce
3.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146151

RESUMO

Ever since its discovery, the applications of Shape Memory Alloys (SMA) can be found across a range of application domains, from structural design to medical technology. This is based upon the unique and inherent characteristics such as thermal Shape Memory Effect (SME) and Superelasticity (or Pseudoelasticity). While thermal SME is used for shape morphing applications wherein temperature change can govern the shape and dimension of the SMA, Superelasticity allows the alloy to withstand a comparatively very high magnitude of loads without undergoing plastic deformation at higher temperatures. These unique properties in wearables have revolutionized the field, and from fabrics to exoskeletons, SMA has found its place in robotics and cobotics. This review article focuses on the most recent research work in the field of SMA-based smart wearables paired with robotic applications for human-robot interaction. The literature is categorized based on SMA property incorporated and on actuator or sensor-based concept. Further, use-cases or conceptual frameworks for SMA fiber in fabric for 'Smart Jacket' and SMA springs in the shoe soles for 'Smart Shoes' are proposed. The conceptual frameworks are built upon existing technologies; however, their utility in a smart factory concept is emphasized, and algorithms to achieve the same are proposed. The integration of the two concepts with the Industrial Internet of Things (IIoT) is discussed, specifically regarding minimizing hazards for the worker/user in Industry 5.0. The article aims to propel a discussion regarding the multi-faceted applications of SMAs in human-robot interaction and Industry 5.0. Furthermore, the challenges and the limitations of the smart alloy and the technological barriers restricting the growth of SMA applications in the field of smart wearables are observed and elaborated.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Ligas/química , Humanos , Plásticos , Ligas de Memória da Forma
4.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459024

RESUMO

Ultra-low-power is a key performance indicator in 6G-IoT ecosystems. Sensor nodes in this eco-system are also capable of running light-weight artificial intelligence (AI) models. In this work, we have achieved high performance in a gas sensor system using Convolutional Neural Network (CNN) with a smaller number of gas sensor elements. We have identified redundant gas sensor elements in a gas sensor array and removed them to reduce the power consumption without significant deviation in the node's performance. The inevitable variation in the performance due to removing redundant sensor elements has been compensated using specialized data pre-processing (zero-padded virtual sensors and spatial augmentation) and CNN. The experiment is demonstrated to classify and quantify the four hazardous gases, viz., acetone, carbon tetrachloride, ethyl methyl ketone, and xylene. The performance of the unoptimized gas sensor array has been taken as a "baseline" to compare the performance of the optimized gas sensor array. Our proposed approach reduces the power consumption from 10 Watts to 5 Watts; classification performance sustained to 100 percent while quantification performance compensated up to a mean squared error (MSE) of 1.12 × 10-2. Thus, our power-efficient optimization paves the way to "computation on edge", even in the resource-constrained 6G-IoT paradigm.


Assuntos
Inteligência Artificial , Ecossistema , Gases , Redes Neurais de Computação
5.
Disaster Med Public Health Prep ; 13(2): 203-210, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29789025

RESUMO

The actions taken at the initial times of a disaster are critical. Catastrophe occurs because of terrorist acts or natural hazards which have the potential to disrupt the infrastructure of wireless communication networks. Therefore, essential emergency functions such as search, rescue, and recovery operations during a catastrophic event will be disabled. We propose tethered balloon technology to provide efficient emergency communication services and reduce casualty mortality and morbidity for disaster recovery. The tethered balloon is an actively developed research area and a simple solution to support the performance, facilities, and services of emergency medical communication. The most critical requirement for rescue and relief teams is having a higher quality of communication services which enables them to save people's lives. Using our proposed technology, it has been reported that the performance of rescue and relief teams significantly improved. OPNET Modeler 14.5 is used for a network simulated with the help of ad hoc tools (Disaster Med Public Health Preparedness. 2019;13:203-210).


Assuntos
Planejamento em Desastres/métodos , Sistemas de Comunicação entre Serviços de Emergência/tendências , Planejamento em Desastres/tendências , Serviços Médicos de Emergência/métodos , Serviços Médicos de Emergência/tendências , Desenho de Equipamento/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...